Enrollment No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL – 2017

M. Sc. Mathematics

16PMTCC08 - REAL ANALYSIS

Duration of Exam – 3 hrs

Semester – II

Max. Marks – 70

$\underline{Part A}$ (5x2= 10 marks)

Answer ALL questions

- 1. State Little wood second principle.
- 2. Define convergence in measure.
- 3. State Fatou's lemma.
- 4. Define algebra of sets with example.
- 5. Define p-integrable function.

<u>Part B</u> (5x5= 25 marks) Answer <u>ALL</u> questions

6a. Prove that a constant function is integrable.

OR

6b. State $M_k - m_k$ theorem. Evaluate $\lim_{n \to \infty} \sup a_n$ and $\lim_{n \to \infty} \inf a_n$ where $a_n = \left\{ \begin{array}{l} \frac{n}{n+1} & \text{, if } n \text{ is odd} \\ \frac{1}{n+1} & \text{, if } n \text{ is even} \end{array} \right\}$.

7a. Let μ be a measure on X. Then show that μ is countably subadditive.

OR

- 7b. Let $f: R \to R$ be given by f(0) = 0 and f(x) = |x|, if $x \neq 0$. Determine $(D^+f)(0), (D_+f)(0), (D^-f)(0)$ and $(D_-f)(0)$.
- 8a. Define Function of bounded variation. Let $f: [0, 2] \to R$ given by f(0) = 0 and $f(x) = x sin(\frac{\pi}{x})$, $if x \neq 0$. Then show that f is not a function of bounded variation on [0, 2].
- OR
- 8b. Let f be a non negative measurable function and is integrable over a measurable set E. Let g be a nonnegative measurable function such that g(x) < f(x), $\forall x \in E$. Then g is also integrable over E and moreover $\int_{E} f - g = \int_{E} f - \int_{E} g$.
- 9a State and prove Little wood first principle.

OR

9b Define general Lebesgue integral and verify that $|f| = f^+ - f^-$.

- Let $D \subseteq R$ be measurable. Let $f: D \to R$ be any continuous function then prove that f is 10a measurable function.
- OR
- 10b Let $\langle f_n \rangle$ be a sequence of real valued measurable functions defined on a measurable set E. Let f be a real valued measurable function defined on E such that $f_n \to f$ in measure

on E. Then exists a subsequence $\left\langle f_{n_v} \right\rangle$ of $\left\langle f_n \right\rangle$ such that $f_{n_v} \to f$ almost everywhere

on E.

<u>Part C</u> (5X7= 35 marks) Answer ALL questions.

11a. State and prove Holders inequality.

OR

11b. Let f, g be measurable functions which are integrable over a measurable set E then prove that

f + g is integrable over E and $\int_{E} f + g = \int_{E} f + \int_{E} g$.

12a. The countable union of countable sets is countable.

OR

- Let B be the collection of all Borel sets in R then prove that B is also the smallest σ -12b. algebra of sets on R containing the collection of all closed sets in R.
- 13a. State and prove Minkowski inequality for $1 \le p \le \infty$.
- OR
- Define upper and lower sum and show that both these sums are bounded and has 13b. supremum and infimum.
- 14a. Let $f:[a,b] \rightarrow R$ be a function of bounded variation on [a,b] then prove that P - N = f(b) - f(a) and T = P + N.

OR

- 14b. State and prove refinement lemma.
- 15a. Let $D \in M$ and f be an extended real valued function defined on D then Prove that the following statements are equivalent:
 - i) $\{x \in D | f(x) > \alpha, \alpha \in R\}$ Is measurable.
 - ii) $\{x \in D | f(x) < \alpha, \alpha \in R\}$ Is measurable.
 - iii) $\{x \in D | f(x) \le \alpha, \alpha \in R\}$ Is measurable.
 - iv) $\{x \in D | f(x) \ge \alpha, \alpha \in R\}$ Is measurable.

OR

15b. Define Lebesgue outer measure and prove that m^* is translation invariant.